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Abstract. We continue our study of one-dimensional class of Euler equations,

introduced in [11], driven by a forcing with a commutator structure of the form
[Lφ, u](ρ), where u is the velocity field and Lφ belongs to a rather general class

of convolution operators depending on interaction kernels φ.

In this paper we quantify the large-time behavior of such systems in terms of
fast flocking, for two prototypical sub-classes of kernels: bounded positive φ’s,

and singular φ(r) = r−(1+α) of order α ∈ [1, 2) associated with the action of

the fractional Laplacian Lφ = −(−∂xx)α/2. Specifically, we prove fast velocity
alignment as the velocity u(·, t) approaches a constant state, u→ ū, with expo-

nentially decaying slope and curvature bounds |ux(·, t)|∞+|uxx(·, t)|∞ . e−δt.
The alignment is accompanied by exponentially fast flocking of the density to-
wards a fixed traveling state ρ(·, t)− ρ∞(x− ūt)→ 0.

1. Introduction and statement of main results.

1.1. Flocking hydrodynamics. In this paper we continue our study initiated in
[11], of Eulerian dynamics driven by forcing with a commutator structure. In the
one dimensional case, the dynamics of a density-velocity pair (ρ, u) : Ω × R+ 7→ R
is governed by the system of the form{

ρt + (ρu)x = 0,

ut + uux = [Lφ, u](ρ),
(1)
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where the commutator on the right, [Lφ, u](ρ) := Lφ(ρu) − Lφ(ρ)u, involves a
convolution kernel

Lφ(f) :=

∫
R
φ(|x− y|)(f(y)− f(x))dy. (2)

The motivation for (1) comes from the hydrodynamic description of a large-crowd
dynamics driven by Cucker-Smale agent-based model

ẋi = vi,

v̇i =
1

N

N∑
j=1

φ(|xi − xj |)(vj − vi),
(xi, vi) ∈ Ω× R, i = 1, 2, . . . , N. (3)

Here, φ is a positive, bounded influence function which models the binary inter-
actions among agents in Ω. We focus our attention on the periodic or open line
setup, Ω = T,R. The dynamics can be encoded in terms of the empirical dis-

tribution fN = 1
N

∑N
i=1 δxi(t)(x) ⊗ δvi(t)(v). For large crowds, N � 1, a mono-

kinetic limiting distribution fN (x, v, t) ≈ ρ(x, t)δ(v − u(x, t)) is captured by the

first first two moments of density, ρ(x, t) = lim
N→∞

∫
R
fN (x, v, t)dv, and momentum,

ρu(x, t) = lim
N→∞

∫
R
vfN (x, v, t)dv, governed by (1), [5, 2].

ρt + (ρu)x = 0,

ut + uux =

∫
Ω

φ(|x− y|)(u(y, t)− u(x, t))ρ(y, t) dy
(x, t) : Ω× [0,∞). (4)

The other important limit of such systems — their large time behavior for t� 1,
is described by the flocking phenomenon. To this end, let us introduce the set of
flocking state solutions, consisting of constant velocities, ū, and traveling density
waves ρ̄ = ρ∞(x− tū),

F = {(ū, ρ̄) : ū ≡ constant, ρ̄(x, t) = ρ∞(x− tū)}. (5)

We say that a solution (u(·, t), ρ(·, t)) converges to a flocking state (ū, ρ̄) ∈ F in
Banach pair X × Y if

|u(·, t)− ū|X + |ρ(·, t)− ρ̄(·, t)|Y → 0, as t→∞.
This represents the process of alignment where the diameter of velocities tends to
zero

V (t) := max
x,y∈supp ρ(·,t)

|u(x, t)− u(y, t)| → 0, as t→∞. (6a)

In particular, there is a fast alignment if the flocking convergence rate is exponential.
In the present case of symmetric interactions, the conservation of averaged mass and
momentum,

M(t) :=

∫
Ω

ρ(x, t)dx ≡M0, P(t) :=

∫
Ω

(ρu)(x, t)dx ≡ P0

implies that a limiting flocking velocity, provided it exists, is given by ū = P0/M0.

Remark 1.1. In the case when the dynamics of (4) takes place over the line
Ω = R as in [5, 13], the flocking phenomenon assumes a compactly supported initial
configuration with finite initial velocity variation,

D0 := max
x,y∈supp ρ0

|x− y| <∞, V0 := max
x,y∈supp ρ0

|u0(x)− u0(y)| <∞.



EULERIAN DYNAMICS WITH A COMMUTATOR FORCING 5505

It requires that, in addition to (6a), the flow remains compactly supported

D(t) 6 D∞ <∞, D(t) := max
x,y∈supp ρ(·,t)

|x− y| (6b)

This reflects the corresponding flocking behavior in the agent-based Cucker-Smale
model, max

16i,j6N
|xi(t)−xj(t)| 6 D∞ and max

16i,j6N
|vi(t)− vj(t)| → 0 as t→∞, [5, 9].

1.2. Smooth solutions must flock. The flocking hydrodynamics of (4) for
bounded positive φ’s follows, as long as they admit global smooth solutions. In-
deed, the statement that “smooth solutions must flock” holds in the general setup
of positive kernels whether symmetric or not [6, Lemma 3.1], [13, Theorem 2.1]. For
the sake of completeness we include below the proof of flocking along the lines of
[9, theorem 2.3] which is stated in the following lemma for the periodic case Ω = T.

Lemma 1.1 (Smooth solutions must flock). Let (ρ, u) be a smooth solution of the
one-dimensional system

ρt + (ρu)x = 0,

ut + uux =

∫
T
k(x, y, t)(u(y, t)− u(x, t))ρ(y, t) dy

(x, t) : T× [0,∞), (7)

with strictly positive kernel, ιk(t) = inf
x,y∈T

k(x, y, t) > 0. Then there is a flocking

alignment

V (t) 6 V (0)exp

{
−M

∫ t

τ=0

ιk(τ)dτ

}
, V (t) = max

x,y∈T
|u(x, t)− u(y, t)|.

In particular, the case of symmetric interaction (4) admits fast alignment,

V (t) 6 V (0)e−Mιφt, ιφ := min
x∈T

φ(|x|). (8)

Proof. Let x−(t) be a point where u− = u(x−(t), t) = minu, and x+(t) be a point
where u+ = u(x+(t), t) = maxu. Then the maximal value does not exceed,

d

dt
u+ =

∫
T
k(x+, y, t)(u(y)− u+)ρ(y, t) dy 6 ιk

∫
T
(u(y)− u+)ρ(y, t) dy.

Similarly, we have the lower bound

d

dt
u− > ιk

∫
T
(u(y)− u−)ρ(y, t) dy.

Subtracting the latter implies that the velocity diameter V (t) = max
x,y∈T

|u(x, t) −

u(y, t)| satisfies

d

dt
V (t) 6 −ιkMV (t), V (t) = u+(t)− u−(t)

and the result readily follows.

We demonstrate the generality of lemma 1.1 with the following two examples.

Example 1.1 (an example on non-symmetric kernel). The Mostch-Tadmor model
[8] uses an adaptive normalization, where the pre-factor 1/N on the right of (3)
is replaced by 1/

∑
j φ(|xi − xj |), leading to the flocking hydrodynamics with non-

symmetric kernel k(x, y, t) = φ(|x− y|)/(φ ∗ ρ)(x, t). The lower-bound

k(x, y, t) =
φ(|x− y|)

(φ ∗ ρ)(x, t)
>

ιφ
IφM

, Iφ = max
x∈T

φ(|x|).
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shows that flocking holds for positive, bounded φ’s, with exponential rate dictated
by the condition number of φ but otherwise independent of the total mass, V (t) 6
V (0)e−(ιφ/Iφ)t.

Example 1.2 (an example of unbounded kernels). The fractional Laplacian Lα :=
Lφα is associated with the singular periodized kernels

φα(x) =
∑
k∈Z

1

|x+ 2πk|1+α
, for 0 < α < 2. (9)

Since the argument of lemma 1.1 does not use local integrability, it applies in the
present setting with ια = infx φα(|x|) > 0, leading to fast alignment (8).

We close this subsection by noting that the the extension of lemma 1.1 to the
case of open space Ω = R was proved in [13]. To this end one restricts attention
to the dynamics over {supp ρ(·, t)}: the growth of the velocity diameter V (t) :=

max
x,y∈supp ρ(·,t)

|u(x, t)− u(y, t)|,

d

dt
V (t) 6 −ιkMV (t), V (t) = max

x∈supp ρ(·,t)
u(x, t)− min

y∈supp ρ(·,t)
u(y, t),

is coupled with the obvious bound on the growth of the density support, d
dt
D(t) 6

V (t)D(t). Assume that φ is decreasing so that ιφ > φ(D(t)). It implies a decreasing

free energy E(t) := V (t)+
∫D(t)

τ=0
φ(τ)dτ 6 E0, and fast alignment follows with a finite

diameter, D(t) 6 D∞, dictated by

D(t) 6 D∞, M
∫ D∞

D0

φ(s)ds = V0.

Thus, in the case of open space, Ω = R, compactness of {supp ρ(·, t)} requires a

finite velocity variation V0 <

∫ ∞
D0

φ(s)ds. In particular, an unconditional flocking

follows for global φ’s with unbounded integrable tails. Of course, in the periodic
settings, compactness of the support of ρ is automatic.

1.3. Statement of main results. Lemma 1.1 tells us that for positive φ’s, the
question of flocking is reduced to the question of global regularity. The latter
question — the global regularity of (4), was addressed in our previous study [11] in
the larger context of three classes of interaction kernels. Namely, for bounded φ’s,
global regularity follows for sub-critical initial data such that u′0(x) +φ ∗ ρ0(x) > 0.
For singular kernels φα(x) := |x|−(1+α) corresponding to Lφ = −(−∂xx)α/2, global
regularity follows for α ∈ [1, 2). Finally, global regularity also holds in the limiting
case α = 2 which corresponds to the Navier-Stokes equations with Lφ = ∂xx, and
we recall that the global regularity for the cases α ∈ [1, 2] is independent of a
critical threshold requirement. A main feature of the forcing in all three cases is
their commutator structure in (1) which yields is the conservative transport of the
first-order quantity ux + Lφ(ρ), [1, 11]

et + (ue)x = 0, e := ux + Lφ(ρ). (10)

In this paper, we complement our earlier study of global regularity with the flock-
ing behavior for these classes of interaction kernels. In particular, we make a more
precise flocking statement, where fast alignment max

x,y∈supp ρ(·,t)
|u(x, t)−u(y, t)| . e−δt

is strengthened to an exponential decay of slope and curvature of the velocity
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|ux|∞ + |uxx|∞ . e−δt, and the flocking itself is proved in the strong sense of
exponential convergence to one of the flocking states F . We treat here the flocking
behavior in the two cases of positive φ’s, and of fractional φα, α ∈ [1, 2). The
limiting case of Navier-Stokes equations Lφ = ∂xx does not seem to satisfy fast
alignment due to lack of non-local interactions. Its large-time behavior remains
open.

We begin with the case of a bounded positive kernel, and general density with a
possibility of vacuum. The result is proved in both periodic and open line domains.

Theorem 1.2 (Bounded positive kernels). Consider the system (4) with bounded
positive kernel φ ∈ W 2,∞(Ω), where Ω = T or R. For any initial conditions
(u0, ρ0) ∈W 2,∞ × (W 1,∞ ∩ L1) which satisfies the sub-criticality condition,

u′0 + φ ∗ ρ0 > 0, (11)

there exists a unique global solution (u, ρ) ∈ L∞([0,∞);W 2,∞ × (W 1,∞ ∩ L1)).
Moreover, for fixed β < 1 there exists C, δ > 0 (depending on β) such that the
velocity satisfies the fast alignment estimate

|u′(t)|∞ + |u′′(t)|∞ 6 Ce−δt, (12)

and there is an exponential convergence towards the flocking state (ū, ρ̄) ∈ F , where
ū = P0/M0 and ρ̄ = ρ∞(x− tū) ∈W 1,∞,

|u(t)− ū|W 2,∞ + |ρ(t)− ρ̄(t)|Cβ 6 Ce−δt, t > 0. (13)

Next we turn to the case of singular kernels, φα(x) = |x|−(1+α), 1 6 α < 2, in
the periodic setting Ω = T, and no-vacuum condition ρ0 > 0. The latter two are
necessary to maintain uniform parabolicity of the system.

Theorem 1.3 (Singular kernels of fractional order α ∈ [1, 2)). Consider the system
(4) with singular kernel φα(x) = |x|−(1+α), 1 6 α < 2 on the periodic torus T.
For any initial condition (u0, ρ0) ∈ H3 ×H2+α away from the vacuum there exists
a unique global solution (u, ρ) ∈ L∞([0,∞);H3 ×H2+α). Moreover, for fixed s <
3 there exists C, δ > 0 (depending on s) such that the velocity satisfies the fast
alignment estimate,

|u′(t)|∞ + |u′′(t)|∞ + |u′′′(t)|2 6 Ce−δt, (14)

and there is an exponential convergence towards the flocking state (ū, ρ̄) ∈ F , where
ū = P0/M0 and ρ̄ = ρ∞(x− tū) ∈ H3,

|u(t)− ū|H3 + |ρ(t)− ρ̄(t)|Hs 6 Ce−δt, t > 0. (15)

Remark 1.2. (On the singular case of fractional order α ∈ (0, 1)) Shortly after
our release of [11] another approach to the regularity of (4) appeared in the work
of T. Do et. al. [4]. Their alternative approach, based on the propagation of
properly-tuned modulus of continuity along the lines of [7], covers the regularity
of (4)α which is treated as critical system for the range α ∈ (0, 1), complementing
our study [11] in the range α ∈ [1, 2). In an upcoming work [12] our regularity
arguments are adapted to the respective range, α ∈ (0, 1), proving that flocking
statement of theorem Theorem 1.3 survives for 0 < α < 1.
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2. Flocking with smooth positive kernels. Our starting point is the conserva-
tive transport (10). In the case of positive mollifier we have [Lφ, u](ρ) = [φ∗, u](ρ)
and (10) yields

et + (ue)x = 0, e := u′(x, t) + φ ∗ ρ(x, t) (16)

Hence the positivity e0 > 0 propagates in time. It follows that (4) admits global
smooth solutions under the critical threshold condition e0(·) > 0, see [1] for de-
tails. The flocking of these solutions, which is guaranteed by Lemma 1.1, is quan-
tified in the following two lemmas in terms of constants C, δ > 0, depending on
M, |φ|W 1,∞ , |u0|W 1,∞ ,minφ > 0 and min e0 > 0.

Lemma 2.1. Suppose e0 > 0 on Ω. There exist constants C, δ > 0 such that

|u′(·, t)|∞ 6 Ce−δt.

Proof. We rewrite (16) as a logistic equation along characteristics ẋ(t) = u(x(t), t)
with non-autonomous threshold h := φ ∗ ρ,

D

Dt
e = (h− e)e, h = φ ∗ ρ. (17)

Here and below,
D

Dt
denotes differentiation along generic particle path {x(t) =

x(t;x0)} initiated at x(t = 0;x0) = x0. Hence, in view of the bound Mιφ 6
h(x, t) 6MIφ,

(MIφ − e)e >
D

Dt
e > (Mιφ − e)e.

Since e0 is uniformly bounded from above and away from zero, it follows that there
exists a time t0 > 0 such that the quantity e(t) = e(t;x0) remains likewise bounded
from above and below uniformly for all initial conditions e0 = e(t = 0;x0),

C0 := 2MIφ > e(t) >Mιφ/2 =: c0 > 0, t > t0. (18)

Let us now write the equation for φ ∗ ρ by convolving the mass equation φ ∗ ρt +φ ∗
(ρu)x = 0:

(φ ∗ ρ)t + u(φ ∗ ρ)x = −[φ′∗, u]ρ, (19a)

where the commutator is given by

[φ′∗, u]ρ =

∫
T
φ′(|x− y|)

(
u(x, t)− u(y, t)

)
ρ(y, t)dy.

In view of Lemma 1.1, and the fact that φ ∈W 1,∞ we have

|[φ′∗, u]ρ| 6 CM|φ|W 1,∞e−δt. (19b)

In what follows we denote by E = E(t) a generic exponentially decaying quantity,

so (19) reads
D

Dt
h = E, uniformly over all initial conditions x0 ∈ Ω. Let us rewrite

this equation for the difference h = e− u′:
D

Dt
u′ = −u′e+ E.

Recall that for large enough time, t > t0 we have the positive boundedness 0 <
c0 < e < C0 uniformly over initial conditions. This readily implies

|u′(x(t;x0), t)| 6 E(t)

uniformly over x0. Since at any time t characteristics cover all Ω we arrive at the
desired bound |ux(t)|∞ 6 E(t).
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Solving the density equation along characteristics we obtain

ρ(x(t;x0), t) = ρ0(x0) exp

{
−
∫ t

0

ux(x(s;x0), s) ds

}
. (20)

So, in view of Lemma 2.1 the density enjoys a pointwise global bound (which is not
given a priori)

sup
t>0
|ρ(·, t)|∞ <∞. (21)

Next we establish a second round of estimates in higher order regularity in order
to get a control over ρ′ and then prove flocking of the density.

Lemma 2.2. There exist C, δ > 0 such that

|u′′(·, t)|∞ 6 Ce−δt.

Proof. Let us write the equations for e′ and h′ = φ′ ∗ ρ:

D

Dt
e′ = −2u′e′ + (h′ − e′)e

D

Dt
h′ =

∫
T
φ′′(|x− y|)

(
u(x, t)− u(y, t)

)
ρ(y, t)dy.

Clearly, the right hand side of h′-equation is exponentially decaying, = E. Sub-
tracting the two we obtain the equation for u′′:

D

Dt
u′′ = −u′′e− 2u′e′ + E. (22)

Note that clearly, h′ is a bounded function, hence u′e′ = Eu′′ + E. So,

D

Dt
u′′ = −u′′e− Eu′′ + E. (23)

Once again, the positive boundedness of e in (18), implies that for large enough
time,

D

Dt
u′′ = −u′′e+ E, t > t0, (24)

and the lemma follows.

Let’s write the equation for ρx:

D

Dt
ρ′ = −2u′ρ′ − u′′ρ = Eρ′ + E (25)

This shows that ρ′ is uniformly bounded. We are now ready to prove Theorem 1.2.
We state the last computation in a lemma as it will also be used ad verbatim in the
next section.

Lemma 2.3. Let (u, ρ) ∈W 2,∞×W 1,∞ be any solution pair to (4). For fixed β < 1
there exist C, δ > 0 (depending on β) and a flocking pair (ū, ρ̄) ∈ F , ρ̄ ∈ W 1,∞,
such that,

|ρ(·, t)− ρ̄(·, t)|Cβ 6 Ce−δt, t > 0. (26)

Thus, F contains all limiting states of the system (4).

Proof. The velocity alignment goes to its natural limit ū = P/M. Denote ρ̃(x, t) :=
ρ(x+ tū, t). Then ρ̃ satisfies

ρ̃t + (u− ū)ρ̃x + uxρ̃ = 0,
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where all the u’s are evaluated at x + tū. According to the established bounds we
have |ρ̃t|∞ < Ce−δt. This proves that ρ̃(t) is Cauchy as t → ∞, and hence there
exists a unique limiting state, ρ∞(x), such that

|ρ̃(·, t)− ρ∞(·)|∞ < C1e
−δt.

Shifting x this can be expressed in terms of ρ and ρ̄(·, t) = ρ∞(x− tū)

|ρ(·, t)− ρ̄(·, t)|∞ < C1e
−δt.

We also have ρ̄ ∈W 1,∞ from weak-star compactness. The statement of the lemma
follows by interpolation of this exponential bound with the C1-bound of ρ.

3. Flocking with singular kernels.

3.1. Uniform bounds on density, and velocity alignment. The results of this
section lead towards the first step in the proof of Theorem 1.3. However, we state
them in such generality since they hold for a much broader class of kernels satisfying
the following three properties.

(i) Boundedness (away from the origin): for any r > 0,

ιφ(r) := inf
|x|<r

φ(|x|) <∞;

(ii) Positivity: ιφ(2π) = infx φ(|x|) > 0;
(iii) Singularity : lim supr→0 rιφ(r) =∞.

This class of kernels which was already identified in [11, Section 3.2], includes the
singular periodized kernels associated with −(−∂xx)α/2,

φα(x) =
∑
k∈Z

1

|x+ 2πk|1+α
for 0 < α < 2. (27)

The case of local Laplacian L = ∂xx is not included.
We recall that due to the positivity (ii), Lemma 1.1 applies — as noted in Ex-

ample 1.2, fast flocking holds irrespective of (lack of) local integrability

V (t) 6 V (0)e−Mιφt. (28)

As before, our starting point is the conservative transport (10) involving Lα ≡
Lφα ,

et + (ue)x = 0, e = u′ + Lα(ρ). (29)

Paired with the mass equation we find that the ratio q = e/ρ satisfies the transport
equation

D

Dt
q = qt + uqx = 0. (30)

Starting from sufficiently smooth initial condition with ρ0 away from vacuum we
can assume that

Q = |q(t)|∞ = |q0|∞ <∞. (31)

Lemma 3.1. Let φ be a kernel satisfying (i),(ii),(iii) above. Consider the pair
(u, ρ) which is a smooth solution to (1),(2)α subject to initial density ρ0 away from
vacuum. Then there are positive constants c = c(M, Q, φ), C = C(M, Q, φ) such
that

0 < c 6 ρ(x, t) 6 C, x ∈ T, t > 0. (32)
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Remark 3.1. The upper bound and the weaker lower-bound ρ(·, t) & 1/t was estab-
lished for the CS hydrodynamics (3) along the line of the 1D decay for commutator
forcing [11]. We include both cases for completeness.

Proof. Let us recall that the density equation can be rewritten as

ρt + uρx = −qρ2 + ρLα(ρ). (33)

Let us evaluate at a point where the maximum ρ+ is reached at x+. We obtain

D

Dt
ρ+ = −q(x+, t)ρ

2
+ + ρ+

∫
φ(|z|)(ρ(x+ + z, t)− ρ+) dz

6 Qρ2
+ + ρ+

∫
|z|<r

φ(|z|)(ρ(x+ + z, t)− ρ+) dz

6 Qρ2
+ + ιφ(r)ρ+(M− rρ+) = Qρ2

+ + ιφ(r)Mρ+ − 2rιφ(r)ρ2
+.

In view of assumption (iii) we can pick r large enough to satisfy rιφ(r) > Q + 1,
while according to (i) ιφ(r) itself remains finite. We thus achieve inequality

D

Dt
ρ+ 6 −ρ2

+ + ιφ(r)Mρ+,

which establishes the upper bound by integration.
As to the lower bound we argue similarly. Let ρ− and x− the minimum value of

ρ and a point where such value is achieved. We have

D

Dt
ρ− > −Qρ2

− + ρ−

∫
T
φ(|z|)(ρ(x− + z, t)− ρ−) dz

> −Qρ2
− + ιφ(2π)ρ−(M− 2πρ−) = −(Q+ 2πιφ(2π))ρ2

− + ιφ(2π)Mρ−.

In view of (ii) the linear term on the right hand side has a positive coefficient. This
readily implies the uniform lower bound.

Subsequently we focus solely on the critical case α = 1. The case 1 < α < 2
requires the same prerequisites as established in this section, however, incorporating
it into the existing proof below would actually require fewer steps due to excess of
dissipation. We will skip those for the sake of brevity of what will already be a
technical exposition.

3.2. An initial approach towards Theorem 1.3. In this section we specialize
on the case of critical singular kernel, and establish uniform control on the first order
quantities |ρx|∞, |ux|∞. We assume that we start with initial condition (u0, ρ0) ∈
H3(T). As shown in [11] there exists a global solution to (1) in the same space. So,
we can perform all of the computations below as classical.

First, let us recite one argument from [11]. Recall that the density ρ satisfies the
following parabolic form of the density equation, expressed in terms of L1 ≡ −Λ,

ρt + uρx + eρ = −ρΛ(ρ), , Λ(f) = p.v.

∫
R

f(x)− f(y)

|x− y|2
dy. (34)

Similarly, one can write the equation for the momentum m = ρu:

mt + umx + em = −ρΛ(m). (35)

In both cases the drift u and the forcing eρ or em are bounded a priori due to the
maximum principle and Lemma 3.1. Moreover, the diffusion operator has kernel

K(x, h, t) = ρ(x)
1

|h|2
.
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Using lower bound on the density from Lemma 3.1 we conclude that the kernel falls
under the assumptions of Schwab and Silverstre [10] uniformly on the time line. A
direct application of [10] implies that there exists an γ > 0 such that

|ρ|Cγ(T×[t+1,t+2)) 6 C(|ρ|L∞(T×[t,t+2)) + |ρe|L∞(T×[t,t+2))),

|m|Cγ(T×[t+1,t+2)) 6 C(|m|L∞(T×[t,t+2)) + |me|L∞(T×[t,t+2))),

|u|Cγ(T×[t+1,t+2)) 6 C(|u|L∞(T×[t,t+2)), |ρ|L∞(T×[t,t+2))),

(36)

holds for all t > 0. Since the right hand sides are uniformly bounded on the entire
line we have obtained uniform bounds on Cγ-norm starting from time t = 1. Since
we are concerned with long time dynamics let us reset initial time to t = 1, and
allow ourselves to assume that Cγ-norms are bounded from time t = 0.

Lemma 3.2. We make the same assumptions stated in Theorem 1.3. Then the
following uniform bound holds

sup
t>0
|ρ′(·, t)|∞ <∞. (37)

Proof. The argument goes verbatim as presented in [11, Section 6.2] with all the
constants involved being uniform in view of the established bounds above. We recall
the penultimate inequality

d

dt
|ρ′|2 6 c1 + c2|ρ′|2 − c3Dρ′(x),

where all the quantities are evaluated at a point of maximum of |ρ′|, and where

Dρ′(x) =

∫
R

|ρ′(x)− ρ′(x+ z)|2

|z|2
dz.

Using the nonlinear maximum bound from [3]

Dρ′(x) > c4
|ρ′|3∞
|ρ|∞

> c5|ρ′|3∞,

we can further hide the quadratic term into dissipation to obtain

d

dt
|ρ′|2 6 c6 − c7Dρ′(x) 6 c6 − c8|ρ′|3. (38)

This enables us to conclude the Lemma.

We turn to study the flocking behavior in the singular case. To this end, we
first prepare preliminary estimates on the dissipation terms to be encountered in
the sequel. Below is an improvement on nonlinear maximum principle bound of [3]
in the case of small amplitudes. As a byproduct we obtain a trilinear estimate that
will be used in the sequel.

Lemma 3.3 (Enhancement of dissipation by small amplitudes). Let u ∈ C1(T) be
a given function with amplitude V = maxu−minu. There is an absolute constant
c1 > 0 such that the following pointwise estimate holds

Du′(x) > c1
|u′(x)|3

V
. (39)

In addition, there is an absolute constant c2 > 0 such that for all B > 0 one has

Du′(x) > B|u′(x)|2 − c2B3V 2. (40)
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Proof. We start as in [3]. Using smooth truncations in the integrals we obtain, for
every r > 0:

Du′(x) >
∫
|z|>r

|u′(x)|2 − 2u′(x+ z)u′(x)

|z|2
dz,

where we dropped the positive term with |u′(x+ z)|2. Now, using that u′(x+ z) =
uz(x + z) = (u(x + z) − u(x))z we can integrate by parts in the second term to
obtain

Du′(x) >
|u′(x)|2

r
+ 4u′(x)

∫
|z|>r

u(x+ z)− u(x)

|z|4
z dz >

|u′(x)|2

r
− c0|u′(x)|V 1

r2
.

By picking r = 2c0V
|u′(x)| we obtain (39). Picking r = 1

2B and using Young’s inequality,

Du′(x) > 2B|u′(x)|2 − 4c0|u′(x)|V B2 > B|u′(x)|2 − 16c0B
3V 2,

and (40) follows.

We proceed to the exponential decay of u′ and u′′ which is quantified in the next
two lemmas, in terms of constants C, δ > 0, depending onM, |u0|H3 and additional
parameters specified below.

Lemma 3.4. We make the same assumptions stated in Theorem 1.3. There exist
constants C, δ > 0 such that for all t > 0 one has

|u′(·, t)|∞ 6 Ce−δt. (41)

Proof. Differentiating the u-equation and evaluating at a point of maximum we
obtain

d

dt
|u′|2 6 |u′|3 + T (ρ′, u)u′ + T (ρ, u′)u′, T (ρ, u) := −Λ(ρu) + uΛ(ρ).

First, as to the dissipation term, let us fist observe

(u′(y)−u′(x))u′(x) = −1

2
|u(y)−u(x)|2 +

1

2
(|u′(y)|2−|u′(x)|2) 6 −1

2
|u(y)−u(x)|2.

Thus, in view of Lemma 3.1,

T (ρ, u′)u′(x) 6 −c1Du′(x).

Let us turn to the remaining term T (ρ′, u)u′. We have

T (ρ′, u)u′ = |u′(x)|2Λρ+ u′(x)

∫
R
ρ′(x+ z)

δzu(x)− zu′(x)

|z|2
dz.

Expressing Λρ = e − ux the first term, and using uniform bound on ρx from
Lemma 3.2 we obtain the bound

|T (ρ′, u)u′| 6 c2|u′|3 + c3|u′|2 + c4|u′|
∣∣∣∣∫

R
ρ′(x+ z)

δzu(x)− zu′(x)

|z|2
dz

∣∣∣∣ .
To bound the integral we split it into the long range {|z| > π} and short range
{|z| 6 π} parts. For the short range we use the bound

|δzu(x)− zu′(x)| 6
∫ z

0

|u′(x+ w)− u′(x)|dw 6 |z|3/2D1/2u′(x),

So, ∣∣∣∣∣
∫
|z|6π

ρ′(x+ z)
δzu(x)− zu′(x)

|z|2
dz

∣∣∣∣∣ 6 |ρ′|∞D1/2u′(x) 6 CD1/2u′(x).
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For the long range part, we apply the following argument (to be used several other
times in the sequel). We have∫

|z|>π

ρ′(x+ z)δzu(x)

|z|2
dz =

∑
k 6=0

∫
|z|6π

ρ′(x+ z)δzu(x)

|z + 2πk|2
dz

6 c6
∑
k 6=0

1

k2

∫
|z|6π

|ρ′(x+ z)||z||u′|∞ dz 6 c7|u′|∞|ρ′|1 6 C|u′|∞.
(42)

Proceeding to the second part,∫
|z|>π

ρ′(x+ z)u′(x)

z
dz =

∑
k 6=0

∫
|z|6π

ρ′(x+ z)u′(x)

z + 2πk
dz

=
∑
k>0

∫
|z|6π

ρ′(x+ z)u′(x)
2z

|z|2 − 4π2k2
dz 6 |u′|∞|ρ′|1 6 C|u′|∞.

(43)

Putting the estimates together we obtain

|T (ρ′, u)u′| 6 c2|u′|3 + c4|u′|2 + c5|u′|D1/2u′(x) 6 c2|u′|3 + c6|u′|2 +
1

2
c1Du′(x).

Altogether we have obtained, resetting the constant counter,

d

dt
|u′|2 6 c2|u′|3 + c6|u′|2 − c7Du′(x).

In view of Lemma 3.3, we have

d

dt
|u′|2 6 c8V − c9|u′|2∞.

Integrating we discover that |u′| → 0 as an exponential rate of at least 1
2 min{c9, cIφ},

the latter being the rate of decay of V . This finishes the proof.

The estimates established so far are sufficient to prove an initial version of The-
orem 1.3 as stated in Lemma 2.3. The proof the lemma goes ad verbatim in the
present case.

3.3. Completing the proof of Theorem 1.3. In this section we perform com-
putations with the goal to show that the flocking proved in Lemma 2.3 takes place
in all spaces up to H3, and that the limiting profile ρ̄ itself belongs to H3. We
prove exponential flattening of u in terms of curvature |u′′|∞ and third derivative
u′′′ in L2. This complements the statement of Lemma 2.3 to the full extent of
Theorem 1.3.

We start by showing exponential decay of |u′′|∞. As before we denote by E =
E(t) any quantity with an exponential decay, e.g. |u′|∞ = E, or V = E. Thus,
according to Lemma 3.3, we have pointwise bounds

Du′′(x) >
|u′′(x)|3

E
,

Du′′(x) > B|u′′(x)|2 − C(B)E.

(44)

Due to these bounds the dissipation term absorbs all cubic and quadratic terms
with bounded coefficients. It does the latter at the cost of adding a free E-term
unattached to either u or ρ. Finally, let us recall from [11] that the quantity
Q = (e/ρ)x/ρ is transported: Qt+uQx = 0. As such, it remains bounded uniformly
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for all times. Expressing e′ from Q, we see that e′ is controlled by ρ′ and ρ, which
in view of Lemma 3.2 implies uniform bound on e′:

sup
t
|e′(·, t)|∞ <∞. (45)

Using this additional piece of information we are in a position to prove control of
the curvature.

Lemma 3.5. We make the same assumptions stated in Theorem 1.3. There are
constants C, δ > 0 such that for all t > 0 one has

|u′′(·, t)|∞ 6 Ce−δt. (46)

Proof. Evaluating the u-equation at a point of maximum and performing the same
initial steps as in Lemma 3.4 we obtain

d

dt
|u′′|2 6 E|u′′|2 − c0Du′′(x) + T (ρ′′, u)u′′ + 2T (ρ′, u′)u′′. (47)

We have

T (ρ′′, u)u′′(x) =

∫
R

ρ′′(x+ z)(δzu(x)− zu′(x))u′′(x)

|z|2
dz + Λρ′(x)u′(x)u′′(x).

For the Λρ′ term, in view of (45), we argue that |Λρ′| = |e′−u′′| 6 c1 + |u′′|. Thus,

|Λρ′(x)u′(x)u′′(x)| 6 E(|u′′|+ |u′′|2). (48)

As to the integral term, first, we handle the short range part as usual:∫
|z|6π

ρ′′(x+ z)(δzu(x)− zu′(x))u′′(x)
|z|2 dz 6 |u′′|2∞

∫
|z|6π

|ρ′′(x+ z)|dz 6 |u′′|2∞|ρ′′|1.

However, note that |ρ′′|1 6 |ρ′′|2 6 |Λρ′|2 6 |e′|2 + |u′′|2 6 c2 + c3|u′′|∞. Putting
all estimates together we obtain

|T (ρ′′, u)u′′| 6 E|u′′|+c4|u′′|2+c5|u′′|3+

∫
|z|>π

ρ′′(x+ z)(δzu(x)− zu′(x))u′′(x)

|z|2
dz.

(49)
As the for long range integral extra care is needed due to periodicity of functions,
and we have to avoid having first degree term |u′′| appearing without exponentially
decaying weight. So, performing exactly the same computation as in (42) - (43),
with ρ′ replaced by ρ′′ we get∣∣∣∣∣

∫
|z|>π

ρ′′(x+ z)(δzu(x) + zu′(x))

|z|2
dz

∣∣∣∣∣ 6 c6|u′|∞|ρ′′|1 6 E(1 + |u′′|∞).

Collecting the estimates we obtain

|T (ρ′′, u)u′′| 6 E|u′′|+ c8|u′′|2 + c9|u′′|3.

To bound the remaining term T (ρ′, u′)u′′ we will make use of the dissipation.

T (ρ′, u′)u′′ =

∫
R

ρ′(x+ z)(δzu
′(x)− zu′′(x))u′′(x)

|z|2
dz + Λρ(x)|u′′(x)|2.

We have

|Λρ(x)||u′′(x)|2 = |e− u′||u′′|2 6 c|u′′|2.
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For the small scale part we have∣∣∣∣∣
∫
|z|<π

ρ′(x+ z)(δzu
′(x)− zu′′(x))u′′(x)

|z|2
dz

∣∣∣∣∣ 6 |u′′|
∫
|z|<π

|ρ′|∞D1/2u′′(x)

|z|1/2
dz

6 c10|u′′|D1/2u′′(x) 6 c11|u′′|2 +
c0
4

Du′′(x).

For the large scale part we have∣∣∣∣∣
∫
|z|>π

ρ′(x+ z)(δzu
′(x)− zu′′(x))u′′(x)

|z|2
dz

∣∣∣∣∣ 6 |ρ′||u′′|2.
Thus,

|T (ρ′, u′)u′′| 6 E|u′′|∞ + c14|u′′|2∞ +
c0
4

Du′′(x).

Gathering the obtained estimates into (47) we obtain

d

dt
|u′′|2 6 E|u′′|∞ + c15|u′′|2∞ + c16|u′′|3∞ − c17Du′′(x). (50)

Furthermore, E|u′′|∞ . E2 + |u′′|2∞. In view of (44) the dissipation term absorbs
the quadratic and cubic terms, and we are left with

d

dt
|u′′|2 6 E − c18Du′′(x) . E − |u′′(x)|2. (51)

This finishes the proof.

Corollary 1. We have, for every 1 6 p <∞,

sup
t
|ρ′′(·, t)|p <∞.

Indeed, |Hρ′′|∞ = |Λρ′|∞ 6 |e′|∞ + |u′′|∞, where H stands for the classical
Hilbert transform. In view of Lemma 3.5 and (45) this establishes uniform control
over |Hρ′′|∞ in time. Since we are in the torus settings, this automatically implies
uniform bound for all Lp-norms of ρ′′.

In what follows we tacitly use these bounds by simply replacing uniformly bounded
quantities such as above by constants.

We are now in a position to perform final estimates in the top regularity class
H3.

Lemma 3.6. We make the same assumptions stated in Theorem 1.3. There are
constants C, δ > 0 such that for all t > 0 one has

|u′′′(·, t)|2 6 Ce−δt

|ρ′′′(·, t)|2 6 C.
(52)

First we need a universal bound on the large scale of a triple product, similar in
spirit to (42)-(43) which we recast more generally to suit the context of Lemma 3.6.

Lemma 3.7. For any three 2π-periodic function f, g, h we have the following bound∣∣∣∣∣
∫
T

∫
|z|>π

f(x+ z)(δzg(x)− zg′(x))h(x)

|z|2
dz dx

∣∣∣∣∣ 6 C|f |p1 |g′|p2 |h|p3 , (53)

for any conjugate triple 1
p1

+ 1
p2

+ 1
p3

= 1.
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Proof.∫
T

∫
|z|>π

f(x+ z)(δzg(x)− zg′(x))h(x)

|z|2
dz dx

=
∑
k 6=0

∫
T

∫
|z|6π

f(x+ z)δzg(x)

|z + 2πk|2
dzh(x) dx+

∫
T

∫
|z|6π

f(x+ z)

z + 2πk
dz g′(x)h(x) dx

6
∫ 1

0

∫
T2

|f(x+ z)g′(x+ θz)h(x)|dx dz dθ

+

∫
T

∫
|z|6π

f(x+ z)g′(x)h(x)
∑
k>0

2z

|z|2 − 4π2k2
dxdz

6
∫ 1

0

∫
T2

|f(x+ z)g′(x+ θz)h(x)|dxdz dθ +

∫
T2

|f(x+ z)g′(x)h(x)|dxdz

6 C|f |p1 |g′|p2 |h|p3
for any conjugate triple 1

p1
+ 1

p2
+ 1

p3
= 1.

Proof of Lemma 3.6. Once we establish exponential decay of |u′′′|2, it would imply
control over |ρ′′′|2 via e as follows. Note that e′′ satisfies

d

dt
e′′ + ue′′′ + 2u′e′′ + 2u′′e′ + u′′′e = 0.

Testing with e′′ we obtain

d

dt
|e′′|22 6 3u′e′′e′′ + 2u′′e′e′′ + u′′′ee′′ 6 E(|e′′|22 + |e′′|2). (54)

This readily implies global uniform bound on |e′′|2, and hence on |ρ′′′|2.
Let us write the equation for u′′′:

u′′′t +uu′′′x + 4u′u′′′+ 3u′′u′′ = T (ρ′′′, u) + 3T (ρ′′, u′) + 3T (ρ′, u′′) + T (ρ, u′′′). (55)

Testing with u′′′ we obtain (we suppress integral signs and note that
∫
u′′u′′u′′′ = 0)

d

dt
|u′′′|22 = −7u′(u′′′)2 + 2T (ρ′′′, u)u′′′ + 6T (ρ′′, u′)u′′′ + 6T (ρ′, u′′))u′′′

+ 2T (ρ, u′′′)u′′′

6 E|u′′′|22 − c0
∫

Du′′′ dx+ 2T (ρ′′′, u)u′′′ + 6T (ρ′′, u′)u′′′ + 6T (ρ′, u′′)u′′′.

(56)

Note that
∫

Du′′′ dx = |u′′′|2
H1/2 . As follows from Lemma 3.3 we have the lower

bound ∫
T

Du′′′ dx > B|u′′′|22 − C(B)E, for any B > 0. (57)

Again, the dissipation absorbs all quadratic terms. Let us note that we cannot rely
on the pointwise inequality |e′′| . |ρ′′| since it requires regularity higher than H3.
Hence, the argument has to be genuinely L2 based. We also point out that the
argument of [11] is rough for the purposes of long time asymptotics.

We have

|T (ρ′′′, u)u′′′| =
∫
T
Hρ′′′u′u′′′ dx+

∫
T×R

ρ′′′(x+ z)(δzu(x)− zu′(x))u′′′(x)

|z|2
dz dx.
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Clearly, |
∫
Hρ′′′u′u′′′ dx| 6 E|ρ′′′|2|u′′′|2. In view of (53), the last integral in the

range |z| > π is bounded by the same |ρ′′′|2|u′′′|2|u′|∞ 6 E|ρ′′′|2|u′′′|2. In the range
|z| 6 π we simply use |δzu(x)−zu′(x)| 6 |z|2|u′′|∞. Thus, this part is also bounded
by E|ρ′′′|2|u′′′|2. We have proved

|T (ρ′′′, u)u′′′| 6 E|ρ′′′|2|u′′′|2.

Next,

T (ρ′′, u′)u′′′ =

∫
T
Hρ′′u′′u′′′ dx+

∫
T×R

ρ′′(x+ z)(δzu
′(x)− zu′′(x))u′′′(x)

|z|2
dz dx.

In view of Corollary 1,
∫
THρ

′′u′′u′′′ dx 6 E|u′′′|2 6 E2 + |u′′′|22. Using (53), we
estimate the large scale of the integral by |ρ′′|2|u′′|∞|u′′′|2 6 E|u′′′|2. As to the
small scale, we first observe

|δzu′(x)− zu′′(x)| =
∣∣∣∣∫ z

0

(u′′(x+ w)− u′′(x)) dx

∣∣∣∣
6

(∫ z

0

|u′′(x+ w)− u′′(x)|4

|w|4
dw

)1/4

|z|7/4.

Thus,∣∣∣∣∣
∫
T

∫
|z|<π

ρ′′(x+ z)(δzu
′(x)− zu′′(x))u′′′(x)

|z|2
dz dx

∣∣∣∣∣
6
∫
T

∫
|z|<π

|ρ′′(x+ z)|
(∫

|u′′(x+ w)− u′′(x)|4

|w|4
dw

)1/4

|u′′′(x)|dx|z|−1/4 dz

6 |ρ′′|4|u′′|W 3/4,4 |u′′′|2 6 C|u′′′|1/2
H1/2 |u′′|1/2∞ |u′′′|2 6 E4 + c1|u′′′|22 +

1

2
c0|u′′′|2H1/2 ,

where in the last steps we used Gagliardo-Nirenberg inequality and Corollary 1. All
in all, we obtain

|T (ρ′′, u′)u′′′| 6 E + c2|u′′′|22 +
1

4
c0|u′′′|2H1/2 .

Lastly, in the remaining the term T (ρ′, u′′)u′′′ we make one preparatory step in
which we first move one derivative from u’s over onto ρ′. To this end, we use
symmetrization as follows

T (ρ′, u′′)u′′′

=

∫
ρ′(y)u′′′(x)(u′′(y)− u′′(x))

dy dx

|x− y|2

=
1

2

∫∫
(ρ′(y)u′′′(x)− ρ′(x)u′′′(y))(u′′(y)− u′′(x))

dy dx

|x− y|2

=
1

2

∫∫
(ρ′(y)− ρ′(x))u′′′(x)(u′′(y)− u′′(x))

dy dx

|x− y|2

+
1

2

∫∫
ρ′(x)(u′′′(x)− u′′′(y))(u′′(y)− u′′(x))

dy dx

|x− y|2

=
1

2

∫∫
δzρ
′(x)u′′′(x)δzu

′′(x)
dz dx

|z|2
+

1

2

∫∫
ρ′(x)δzu

′′′(x)δzu
′′(x)

dz dx

|z|2
.
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Thus, in the second term we have a full derivative δzu
′′′(x)δzu

′′(x) = ((δzu
′′(x))2)′.

So, integrating by parts, we obtain∫∫
ρ′(x)δzu

′′′(x)δzu
′′(x)

dz dx

|z|2

= −1

2

∫∫
ρ′′(x)|δzu′′(x)|2 dz dx

|z|2
6 c3|ρ′′|2|u′′|2W 3/4,4

6 c4|u′′′|H1/2 |u′′|∞ 6 E +
1

4
c0|u′′′|2H1/2 .

In the first term, we estimate, by (53),∫∫
δzρ
′(x)u′′′(x)δzu

′′(x)
dz dx

|z|2
=

∫
Λρ|u′′′|2

+

∫∫
δzρ
′(x)u′′′(x)(δzu

′′(x)− zu′′′(x))
dz dx

|z|2

6 |Λρ|∞|u′′′|22 + |ρ′|∞|u′′′|22

+

∫∫
|z|<π

δzρ
′(x)u′′′(x)(δzu

′′(x)− zu′′′(x))
dz dx

|z|2

6 c5|u′′′|22 + |u′′′|H1/2 |u′′′|2 6 c6|u′′′|22 +
1

4
c0|u′′′|2H1/2 .

Thus,

|T (ρ′, u′′)u′′′| 6 E + c7|u′′′|22 +
1

2
c0|u′′′|2H1/2 .

In view of (57) the dissipation term absorbs all quadratic terms, and we arrive at

d

dt
|u′′′|22 6 C(B)E −B|u′′′|22 + E|ρ′′′|22. (58)

Extra care is needed due to the last term since we don’t know yet how fast |ρ′′′|2
can grow. Let us get back to the “e” term. As before we have

d

dt
|e′′|22 6 3u′e′′e′′ + 2u′′e′e′′ + u′′′ee′′ 6 E|e′′|22 + E + |u′′′|2|e′′|2

6 E|e′′|22 + E + C(ε)|u′′′|22 + ε|e′′|22,
(59)

for every ε > 0. Fix an arbitrarily small ε > 0, and a pick large B > 4C(ε). Add the
two equations (58), (59) together. Noting that X = |u′′′|22 + |ρ′′′|22 ∼ |u′′′|22 + |e′′|22 ∼
|ρ′′′|22 + |e′′|22, we obtain

d

dt
X 6 C(B)E + EX + εX . E + εX.

This shows that X, and in particular |ρ′′′|2, grows at an arbitrarily small exponential
rate ε. Using it back into (58), we see that in the product E|ρ′′′|22 the rate of
exponential decay of E is fixed and positive, yet that of |ρ′′′|2 is arbitrarily small.
Hence the product decays exponentially, and we arrive at

d

dt
|u′′′|22 6 E −B|u′′′|22. (60)

This proves the lemma.

As a consequence we readily obtain the full statement of Theorem 1.3. Namely,
(14) follows directly from Lemma 3.6, and the convergence for densities stated in
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(15) follows by interpolation between exponential decay in L∞ and uniform bound-
edness in H3. The fact that ρ̄ ∈ H3 is simple consequence of uniform boundedness
of ρ(t) in H3 and weak compactness.
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